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Abstract—This paper reports on experiments for indoor
image-based location recognition. The basic method makes use of
three stages: visual bag-of-words for ranking, a voting method,
and a final verification method, if the voting method does not
produce a consensus. Such a tiered approach is necessary when
there are several visually similar locations in the image database,
such as often occurs in office buildings. Three experiments are
reported here. In the first, three common term-weighting schemes
are compared: ntf, ntfidf and BM25. Surprisingly ntf, the
simplest scheme, is shown to be as accurate as BM25, and
both are better than nt fidf. These results are surprising because
BM?25 has been experimentally shown to be one of the best
weighting schemes for document information retrieval over many
years, and ntfidf has been the preferred weighting scheme for
visual BoW in most other image retrieval work. In the second
experiment, two verification methods are compared: one based on
the fundamental matrix; and one based on a simpler homography
computation. Again, surprisingly, the simpler and more efficient
homography based method is shown to perform as well as the
fundamental matrix method despite the fact that the fundamental
matrix method is more physically plausible. The overall system
achieves a recognition rate of approximately 80% with a wrong
match rate of only 2% (no decision on 18%) on a very challenging
office building data set. In the third experiment, the system is
evaluated on the same office building dataset with more than one
query image. A significant improvement is observed in localisation
performance and the overall system achieves a recognition rate
of 96% with only two wrong image matches.

I. INTRODUCTION

Location recognition in an indoor environment is a chal-
lenging problem and has applications in robot navigation and
as a navigation aid for the blind. The target application for
this work is a navigation aid for the blind, and hence it is
important that incorrect location returns are infrequent. For
such applications it is preferable to return a “no match” result
rather than an incorrect location, as it is always possible for
the application to capture and use another query image.

Visual Bag of Words (BoW) has become a standard ap-
proach in image retrieval and image recognition problems, and
this forms the basis for the work reported here. Sivic et al. [1]
introduced the idea of visual BoW for the first time for
object retrieval using inverse document frequency (idf) as
the weighting scheme. Nister et al. [2] extended this work
to large image databases using hierarchical clustering and
term frequency-inverse document frequency (¢ fidf) weighting.
The system is able to match an image in about one second.
Filliat [3] used a two stage voting scheme for indoor matching.
SIFT, hue and texture features are used for visual BoW and a
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room is recognized only if a quality threshold is reached. The
work is tested on a small scale indoor environment and it has
not been shown to work in office buildings where locations
have similar color/texture schemes. Kang et al. [4] used visual
BoW to perform matching on a large scale indoor office
environment. The top eight images most similar to the query
image are retrieved via visual BoW. A potential localisation is
suggested if there is a cluster of pre-recorded images less than
3 meters from each other among the retrieved images. The
system performance is evaluated on images from one floor of
an office building. Robertson et al. [5] used homography and
rectification for scene recognition in an outdoor environment.
In their work, camera’s are assumed calibrated (or at least
approximately so), and database images are assumed rectified.
Features are identified using the Harris corner detector and a
RANSAC based algorithm for image registration is applied.
The query image is matched against each database image and
the closest match is returned as the location.

Aside from Kang et al. [4], few of these works focus
on the difficult problem of image matching in large indoor
environments with many visually similar locations. This paper
is an extension of the work of Khan et al. [6] which proposed
the use of a homography verification method with visual
BoW. The current work extends that work by evaluating the
BM?25 term-weighting scheme, comparing the homography
verification method to a more physically plausible fundamental
matrix method and experimenting with multiple query images.

II. OVERALL SYSTEM

In standard visual BoW, candidate images similar to the
query image are retrieved and are ranked. The top ranked
image is then selected as the best match. Visual BoW does
not take into account the spatial configuration of features or
other attributes (such as color) and this often leads to spurious
matches. Nevertheless, the correct matching image is often
in the top candidate matches, and incorporating a verification
method in BoW should improve matching performance.

In the following, we assume that a suitable database of
location-labeled images is available for training. From this
trained database, we first extract 96D SIFT features [7] and
use approximate K -means to cluster the features into cluster
centers which are used as visual words. We have used seven
different values of K in our experiments. The visual words
make up the visual vocabulary and an inverted index is then
developed to record which visual words occur in which images.
All this is done off-line during the training phase.



For image classification, the inverted index is used to
retrieve 200 trained images most similar to the query image.
The histograms are then generated from the query and the
top 200 candidate images using a suitable weighting scheme.
The query and candidate histograms are compared to generate
image rankings using the x? measure [3] . If the top three
ranked images refer to the same place, the location is sim-
ply returned without the need for verification. Otherwise, a
verification method is used and the top 50 ranked images are
evaluated one by one for a possible match. The verification
method returns the location once it finds a match. However in
case of no match, ‘no decision’ is returned.

A. Weighting Schemes

Reliable image rankings depend on effective histograms
generated from the query and candidate images. The his-
tograms represent the frequency information of the visual
words in the image. A weighting scheme is normally used
to generate these histograms from the images and the choice
of weighting scheme varies from application to application.
We have compared the following weighting schemes:

1) Normalised Term Frequency (ntf) : In ntf, each
histogram bin refers to the normalised frequency
count of visual words in an image [8].

2) Normalised Term Frequency-Inverse Document
Frequency (ntfidf): In nt fidf, visual words which
appear in many images are penalized and more
weight is given to those words which appear in
few images. For a vocabulary of size M, ntfidf is
computed as follows [8]:

b = i 10y (1)
ng n;
Where n, is the total number of visual words in the
image d, N is the total number of images and n; is
the number of images with visual word .
3) Okapi BM25 (BM25)

Okapi BM2S5 is the best known probabilistic weight-
ing scheme in information retrieval [9] and is com-
monly used for document retrieval [10], [11]. Given
a query () image with words ¢, ..., g, and a training
image D, the BM25 score is computed as follows [9]:

f(g:, D).(ki +1)

R=> IDF(q) D 2
=1

avgdl

)

where f(q;, D) is ¢;’s term frequency in the image
D, |D| is the number of visual words in image D
and avgdl is the average number of visual words per
image in the collection. k; and b are free parameters
and are set at Ky = 2 and b = 0.75 for this work.
IDF is the inverse document frequency of the query
term q;.

III. VERIFICATION METHODS

Verification can be performed on every candidate image
retrieved by visual BoW, but verification is an expensive oper-
ation. Hence the proposed system only performs verification if
visual BoW fails to identify a consistent match in the top three
ranked images. We have experimented with different numbers

for the voting scheme, but no advantage was gained in using
more than three.

Khan et al. compared a planar homography scheme against
several local image information based verification methods and
found planar homography method to be the superior method
[6]. However, planar homography is not a good model of the
world in general as many sets of points in a scene won’t be
planar. Here we introduce several variants of a more physically
plausible fundamental matrix based method. We hypothesise
that the fundamental matrix methods will be more accurate
but may be less efficient than the homography method. First
we describe the homography method and then the fundamental
matrix methods.

A. Homography based (p-BoW)

The planar homography method is described in Figure
1. SIFT correspondences and RANSAC are both used to
produce potential homographies which are verified using the
homography transformation [6], [12] on the remaining SIFT
keypoints. The justification for the algorithm is that although
a planar homography is not expected to work for all feature
correspondences, it should work for several correspondences
especially indoors. The algorithm and its constants are chosen
the same as in [6].

1: Find 10 best SIFT correspondences against query.

2: numPerspective = 0.

3: Use RANSAC for random picking of 4 SIFT corre-

spondences 15 times.

for all sets of 4 SIFT correspondences do
Compute the transformation matrix.
Transform all candidate features to new locations.
Count the number of transformed features coming
within a 3 x 3 window that also correspond (within
a threshold distance of 150).

8: if COUNT>= 3 then

AN A

9: numPerspective + +
10:  end if
11: end for

12: return numPerspective >= 3

Fig. 1: Algorithm for p-BoW based on planar homography

B. Fundamental matrix based (fm-BoW)

The homography method uses structural information for
planar elements of the scenes. fin-BoW on the other hand uses
a full structure match between the query and candidate images.
The algorithm starts by identifying a number of the best SIFT
correspondences between the query and the candidate image
followed by the computation of the fundamental matrix ( [13])
via RANSAC. The fundamental matrix is a 3x3 matrix which
relates corresponding points in two images of the same scene.
The general algorithm estimates the fundamental matrix and
corresponding inlier points from the candidate points deter-
mined by SIFT correspondences. Inlier points are those points
which match according to the fundamental matrix equation:

x'TFx < e, 3)



where 2’ and z are points in two images, and € is an
empricially determined threshold. A larger number of inliers
indicates a more reliable image match. The fin-BoW variants
tested are described below:

fm1-BoW

1) Find top 25% SIFT correspondences between
query and the candidate image.

2) If query and candidate have at least 25% inliers;
consider it a best match.

fm2-BoW

1) Find top 25% SIFT correspondences between
query and the candidate image.

2) If query and candidate have at least 40% inliers;
consider it a best match.

fm3-BoW

1)  Find top 50% SIFT corres. against query.

2) At least 20% inliers; consider it a best match.

fm4-BoW

1)  Find top 10 SIFT corres. against query.

2) At least 20% inliers; consider it a best match.

fm5-BoW

1)  Find top 10 SIFT correspondences against query.
2) At least 75% inliers; consider it a best match.
fm6-BoW

1)  Find top 30 SIFT correspondences against query.
2) At least 20% inliers; consider it a best match.

IV. RESULTS

The data sets and performance measures are briefly de-
scribed in Section IV-A followed by the experimental results.
All experiments are performed on a single core of 3.6 GHz
Intel Core 2 Duo machine.

A. Data Sets and Performance Measures

We have used three data sets and have selected subsets of
images from these data sets to get a reasonable number of
trained features for a fair comparison of the three weighting
schemes.

1) David Nister (DN): This data set contains 4 different
images of 2500 objects/scenes [2]. We have used the
first 4000 images with 3000 for training and 1000
for testing. About 0.5 million trained features are
extracted.

2)  Hongwen Dataset (IE): This data set contains 8000
images of an office environment taken over some
period of time [4]. We have used the first 3000 images
for training and 1000 images for testing. About 1.4
million trained features are extracted.

3) Indoor Dataset(CS): This dataset contains 700 in-
door images of an office building with offices and
some classroom sized computer laboratories [6] —
many different locations within the building look
very similar. 70 images are used for testing and 630
for training. About 0.17 million trained features are
extracted. Since it is a smaller data set, 15-fold cross-
validation with different test and training sets chosen
randomly is performed for each experiment.

The following definitions are used to define the perfor-
mance metrics:

Q: Total number of query images.

Vi Total number of images passed to the verification
method.

N, Number of images correctly matched by the vot-
ing scheme.

M, Number of images correctly matched by the ver-
ification method: M, < V.

Ny Number of images for which no decision is made.

The following evaluation metrics are used in our work:

C, is the correct acceptance rate. Higher is better for
this metric:
Co = (Nv + Mv)/Qt (€]
W. is the consistency of the weighting scheme:
We=(Qt—Vi)/Qu (5)

Higher is better for this metric, but must be used
in conjunction with N,.

N, is the matching accuracy of images not passed
to the verification method. Higher is better for
this metric and indicates the success of weighting

scheme.
Ne=Ny/(Qr — V3). (6)
W, is the wrong match rate. Lower is better for this
metric.
N, + M,) + N,
W,, = 1.0 ot M)+ Na )

Q:

R4 is no-decision rate. Lower is better for this metric
however it must be used in conjunction with W,,.

Rypag = Ng/V;. 3

B. Comparison of Weighting Schemes

We have evaluated the performance of standard visual
BoW with all weighting schemes mentioned in Section II-A
across all data sets and results are shown in Figure 2. For this
experiment, the top ranked image is considered the best match
for the query image. The main purpose of this evaluation is to
identify the best weighting scheme for such applications.

A good weighting scheme should generate good image
rankings and should result in fewer calls to the verification
methods. Results in Table I show that nt fidf scheme performs
worst in regards to consistency but that the matching accuracy
is equally good for all schemes. Table I shows that overall nt f
and BM 25 schemes perform equally well. However, since nt f
is more efficient it is used in the following experiments.

C. fm-BoW vs p-BoW Analysis

Results of the comparison between p-BoW and all fim-BoW
variants are shown in Figure 3 (with the ntf scheme). finl-
BoW is found to give the best performance among its variants
and is comparable with p-BoW as shown in Table II. Results
show that p-BoW and finl-BoW both provide reasonable C,
with a very low W,,. There is not much to differentiate
between p-BoW and fiml-BoW as both can be configured to
give almost the same classification performance.
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Fig. 2: The correct acceptance rates C, for all weighting schemes across all data sets using standard visual BoW.

TABLE I: Weighting schemes analysis.

Weighting schemes consistency W, ]
| [ 1K [ 5K J10K | 25K [ 30K [ 35K [ 50K |
NTF | 0.28 | 0.47 | 0.51 | 0.58 | 0.60 | 0.59 | 0.62
NTFIDF | 0.27 [ 0.42 | 0.43 | 0.44 | 047 | 0.47 | 0.47
BM25 |[0.17 | 0.39 | 048 | 0.57 | 0.58 | 0.57 | 0.58
Weighting schemes accuracy N.
[ 1K [ 5K [ 10K [ 25K [ 30K [ 35K [ 50K
NTF [092]097 099 1 1 1099 ]0.99
NTFIDF | 0.95 | 0.98 1 1 1 1 1
BM25 [0.78 1099098 [099] 1 [0.99]0.99
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Fig. 3: fm-BoW variants performance against the p-BoW. The
curves that are higher and further to the right are better.

TABLE II: Performance comparison of fml-BoW and p-BoW

1K | 5K | 10K | 25K | 30K | 35K | 50K

p-BoW C_a | 061074 ]0.77 | 0.77 | 078 | 0.78 | 0.78
W_m | 0.05 | 0.02 [ 0.03 | 0.02 | 0.03 | 0.02 | 0.03

fml-BoW C_a | 0.65]0.78 1079 | 0.82 | 0.81 | 0.81 | 0.81
W_m | 0.15 | 0.06 | 0.05 | 0.04 | 0.04 | 0.04 | 0.04

1) Computational Time: We have also analyzed the compu-
tational time of the fundamental matrix (FM) and homography
verification methods for matching two images. We have run the
methods several times and the average results are recorded in

Table III. The results show that:

1)  With RANSAC, FM verification method is not as
efficient as homography method.

2)  Without RANSAC option, only 8 correspondences
are picked for the FM method which makes it ef-
ficient but then it gives poor matching performance.

TABLE III: Average time in seconds for verification methods.

FM FM Homography
RANSAC No RANSAC RANSAC
Time 0.175 sec. 0.022 sec. 0.071 sec.

D. Image matching with multiple query images

We have computed the performance of our system with
multiple query images and have compared it with our system
when it uses only one query image (i.e p-BoW and fml-BoW).
Both p-BoW and finl-BoW match a query image in about 0.91
seconds on average including retrieval, voting and verification.
We report the average time to match a query image of the
system with 25K clusters in this section.

We designed one test and one training set. Our test set
includes four query images against each location and we call
them ql (queryl), q2 (query2), q3 (query3) and g4 (query).
All query images differ from each other and do not exist in
the training set. We have conducted the following experiments:

Using two query images (pB-BoW & fmB-BoW)

The system reports the results on a second query image
if it cannot make a localisation decision on the first query
image. Results in Table IV show that pB-BoW and finB-BoW
both achieve a C, of 96% and 95% respectively because the
system finds matches against the second query image most of
the time. The W,, for pB-BoW and fmB-BoW is about 3%
and 4% respectively. The system matches a query image in 1
second on average.

Using four query images

pC-BoW & fmC-BoW: The system reports the results on three
remaining query images if it fails to make a decision on ql.
A localisation decision is made only if q2, q3 and g4 all refer
to the same location. Table IV shows that a C, of 94% is
obtained with both pC-BoW and fmC-BoW, with a W,,, of 3%



TABLE IV: Performance with multiple query images. Note that p-BoW and finl-BoW results are different to Table II because

of different data sets.

One query image Two query ges (with rejected images) Four query images (with rejected images)
C.a | 070 | 0.81 | 083 Ca | 090 | 090 | 0.96 Ca | 083 | 0.87 | 094
P-BoW g T 006 | 006 | 0.03 PB-BoW <= 507 [ 0.09 | 0.03 PC-BoW =506 [ 0.09 | 0.03
Rnd| 024 [ 0.3 | 0.14 R.nd | 003 | 001 | 0.0 R.nd | 0.11 | 0.04 | 0.03
Ca | 077 | 086 089 C_a | 086 | 091 | 095 C.a | 086 | 0.89 | 094
Jml-BoW =510 T 0.04 [ 0.03 fmB-BoW | 5= 513 1 0.07 | 0.04 fmC-BoW | <= —500 T 0.07 [ 0.04
Rond | 0.13 | 0.10 | 0.08 Rond | 002 | 0.02 | 0.01 R.nd | 005 | 0.04 | 0.02
Two query g Three query images Four query imag
Ca | 064 | 076 | 0.77 Ca | 058 | 071 | 0.2 Ca | 053 | 067 | 069
PD-BoW <5~ 0,02 [ 0.01 | 0.00 PE-BoW <= 501 [ 0.01 | 0.01 PE-BoW =501 | 0.01 | 0.0
Rond | 034 | 023 | 022 Rond | 041 | 028 | 027 Rond | 046 | 032 | 030
C.a | 070 | 081 | 0.83 Ca | 064 | 077 | 0.9 Ca | 057 | 071 | 074
fmD-BoW = 001 T 0 0 fmE-BoW g 001 0 0 fmE-BoW g~ 0 0
Rond | 029 | 0.19 [ 0.17 Rond | 035 | 023 | 021 Rond | 043 | 029 | 026

and 4% for pC-BoW and finC-BoW respectively. The system
matches a query image in about 1.2 seconds on average.

pD-BoW & fmD-BoW: The system reports the results on two
query images. A localisation decision is made if two queries
refer to the same location, otherwise a decision is not made.
The system matches the two query image in 1.8 seconds.

PE-BoW & fmE-BoW: The system reports the results on three
query images in about 2.9 seconds. A localisation decision is
made only if three query images refer to the same location.

pF-BoW & fmF-BoW: The system reports the results on all
query images in about 3.8 seconds. A localisation decision is
made only if q1,92,93 and g4 all refer to the same location.

V. CONCLUSION

In this paper we first compared three weighting schemes
for visual BoW location recognition. Surprisingly, we found
that the simplest scheme, ntf, was as good as the more
sophisticated BM?25 scheme. Both ntf and BM25 were
superior to the ntfidf scheme. These results are surprising
as the BM 25 scheme is the standard baseline comparison for
document-retrieval experiments, and the nt fidf scheme is the
default weighting scheme used for visual BoW. It is unclear
why nt f performs so well in these experiments, but we suspect
it is related to the specific nature of the localisation problem
with many images for a relatively small number of locations
(numbering in the tens rather than thousands).

Secondly, we introduced a verification method based on
computation of the fundamental matrix between query and
candidate images and compared it with previous work based
on homography. We hypotheised that the fundamental matrix
method would be more accurate but less efficient than the
planar homography method. We found that it was indeed less
efficient, but surprisingly not much more accurate. However,
the extra processing cost is minimal compared to the whole
retrieval system when used in a tiered fashion. Although the
fundamental matrix method is more physically plausible, for
indoor localisation, there are many planar surfaces, and we
strongly suspect that this allows the simpler planar homogra-
phy method to do as well as the fundamental matrix method.
We believe that these results would transfer to many built
environments, but probably not to less structured ones. Thirdly,

we tested our system performance for indoor image matching
with multiple query images. Unsurprisingly, using multiple
query images improved accuracy significantly, but there was
a trade-off between correct acceptance rate (83% to 96%),
wrong match rate (3% to 0%), and no decision rate (30% to
1%) for 50K clusters. Which configuration to choose depends
entirely on the application. For blind users, minimising the
wrong match rate is key, which means reducing the correct
acceptance rate and increasing the no decision rate.
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